Data Quality

Data quality is paramount at Saildrone. In close collaboration with our science partners, we established a robust and transparent data chain of custody from raw observations to the final data we distribute. Our CF-compliant metadata describes in detail all procedures undertaken to meet the highest level of scientific standards.

In order to make high-quality measurements of key ocean and atmospheric parameters, Saildrone carefully manages multiple factors, including each sensor's initial quality control, drift, calibration, and platform effects. By working in close partnership with the science community, we ensure each sensor and essential variable is properly understood, and calibration and validation are tracked during hardware and software design cycles.

Critically, the overall development of the Saildrone sensor suite included not only rigorous laboratory testing but also multiple years of at-sea comparisons correlating Saildrone data with the established standards of ships and buoys.

Saildrone and its science partners have conducted extensive data comparison between ship, buoys, and saildrone sensors.

"Comparisons with shipboard measurements showed good agreement, inspiring confidence in these new instrument platforms."
The Use of Saildrones to Examine Spring Conditions in the Bering Sea: Instrument Comparisons, Sea Ice Meltwater and Yukon River Plume Studies.
"The Saildrones performed well in the harsh conditions of the Bering Sea (e.g.,  stormy, low light, biofouling) and demonstrated the potential of this innovative platform to advance ecosystem research."
Advances in ecosystem research: Saildrone surveys of oceanography, fish, and marine mammals in the Bering Sea. Oceanography 30(2):113–115,
“A platform that is ready for ocean research missions from the tropics to the Arctic.”
"The use of Saildrones to examine spring conditions in the Bering Sea: Vehicle specification and mission performance," OCEANS 2015 - MTS/IEEE Washington, Washington, DC, 2015, pp. 1-6.

Data Management

Since our early days, we have sought out and developed external partnerships with established experts in the fields of meteorological and oceanographic data, fisheries acoustics, 3D wind flux, and wave measurement. These relationships have resulted in specific sensor development and formal reviews of both our sensor integrations and our validation methodologies. Working groups for bulk surface measurements and specialized sensor measurement, such as from ADCP, 3D winds, echo sounder, and wave instruments, have been crucial in establishing scientific confidence in our measurements and sampling protocols.

We will continue our close collaboration with working groups focused on topics including pre- and post-mission sensor calibration requirements, CF-compliant data formats, and evolution and evaluation of our data delivery pathway to ensure the highest possible level of data quality.

Selected Science Partners


U of Washington
U of Southern Mississippi
U of Rhode Island
U of New Hampshire
U of Hawaii
Stanford University

Selected Publications

Public Private Partnerships to Advance Regional Ocean Observing Capabilities: A Saildrone and NOAA-PMEL Case Study and Future Considerations to Expand to Global Scale Observing

Partnership between the private sector and the ocean observing community brings exciting opportunities to address observing challenges through leveraging the unique strengths of each sector. Here, we discuss a case study of a successful relationship between the National Oceanic and Atmospheric Administration (NOAA) Pacific Marine Environmental Laboratory (PMEL) and Saildrone to instrument an Unmanned Surface Vehicle (USV) in order to serve shared goals. This case study demonstrates that a private company working with a federal laboratory has provided innovative ocean observing solutions deployed at regional scale in only a few years, and we project that this model will be sustainable over the long-term. An alignment of long-term goals with practical deliverables during the development process and integrating group cultures were key to success. To date, this effort has expanded NOAA’s interdisciplinary observing capabilities, improved public access to ocean data, and paved the way for a growing range of USV applications in every ocean. By emphasizing shared needs, complementary strengths, and a clear vision for a sustainable future observing system, we believe that this case study can serve as a blueprint for public and private partners who wish to improve observational capacity. We recommend that the international scientific community continue to foster collaborations between the private sector and regional ocean observing networks. This effort could include regional workshops that build community confidence through independent oversight of data quality. We also recommend that an international framework should be created to organize public and private partners in the atmospheric and oceanographic fields. This body would coordinate development of observational technologies that adhere to best practices and standards for sensor integration, verification, data quality control and delivery, and provide guidance for unmanned vehicle providers. Last, we also recommend building bridges between the private sector, ocean observing community, and the operational forecast community to consider the future of this new private sector, with goals to determine targeted ocean observing needs; assess the appropriateness of USVs as science platforms, sensors, and data format standards; and establish usage and data quality control and distribution protocols for ocean observing and operational forecasting.

Meinig, C., E.F. Burger, N. Cohen, E.D. Cokelet, M.F. Cronin, J.N. Cross, S. de Halleux, R. Jenkins, A.T. Jessup, C.W. Mordy, N. Lawrence-Slavas, A.J. Sutton, D. Zhang, and C. Zhang. Public private partnerships to advance regional ocean observing capabilities: A Saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. OceanObs'19, Front. Mar. Sci., doi: 10.3389/fmars.2019.00448, 2019.

Download Paper (PDF)

Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast

Abstract: Traditional ways of validating satellite-derived sea surface temperature (SST) and sea surface salinity (SSS) products by comparing with buoy measurements, do not allow for evaluating the impact of mesoscale-to-submesoscale variability. We present the validation of remotely sensed SST and SSS data against the unmanned surface vehicle (USV)—called Saildrone—measurements from the 60 day 2018 Baja California campaign. More specifically, biases and root mean square differences (RMSDs) were calculated between USV-derived SST and SSS values, and six satellite-derived SST (MUR, OSTIA, CMC, K10, REMSS, and DMI) and three SSS (JPLSMAP, RSS40, RSS70) products. Biases between the USV SST and OSTIA/CMC/DMI were approximately zero, while MUR showed a bias of 0.3 ◦C. The OSTIA showed the smallest RMSD of 0.39 ◦C, while DMI had the largest RMSD of 0.5 ◦C. An RMSD of 0.4 ◦C between Saildrone SST and the satellite-derived products could be explained by the diurnal and sub-daily variability in USV SST, which currently cannot be resolved by remote sensing measurements. SSS showed fresh biases of 0.1 PSU for JPLSMAP and 0.2 PSU and 0.3 PSU for RMSS40 and RSS70 respectively. SST and SSS showed peaks in coherence at 100 km, most likely associated with the variability of the California Current System.

Vazquez-Cuervo, J.; Gomez-Valdes, J.; Bouali, M.; Miranda, L.E.; Van der Stocken, T.; Tang, W.; Gentemann, C. Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast. Remote Sens. 2019, 11, 1964.

Download Paper (PDF)

Long-term measurements of fish backscatter from Saildrone unmanned surface vehicles and comparison with observations from a noise-reduced research vessel

Two Saildrone unmanned surface vehicles (USVs) were instrumented with echosounders and deployed in the Bering Sea to make acoustic observations of walleye pollock for 103 days. The Saildrones proved to be a suitable platform for measurement of fish backscatter: they produced high-quality measurements at wind speeds of <10 m s−1. Pollock backscatter measured from the Saildrones was compared to backscatter measured by a noise-reduced research vessel during two “follow-the-leader” comparisons. In a location where pollock were shallowly distributed (30–100 m), there was evidence of depth-dependent avoidance reactions to the ship. This behaviour was not evident in a second comparison, where the fish were primarily deeper than 90 m. Opportunistic comparisons indicate that backscatter where the ship and USVs crossed paths was similar. However, the Saildrones observed higher densities of shallow fish, which is consistent with the diving response inferred in the first follow-the-leader comparison. USVs equipped with echosounders, like all platforms, have inherent strengths (endurance) and limitations (species identification) that should be carefully considered for a given application. USVs can complement traditional ship-based surveys by increasing the spatial and temporal extent of acoustic observations, and their use is likely to become more widespread.

Alex De Robertis, Noah Lawrence-Slavas, Richard Jenkins, Ivar Wangen, Calvin W Mordy, Christian Meinig, Mike Levine, Dave Peacock, Heather Tabisola, Long-term measurements of fish backscatter from Saildrone unmanned surface vehicles and comparison with observations from a noise-reduced research vessel, ICES Journal of Marine Science, , fsz124,

Download Paper (PDF)

An Enhanced Ocean Acidification Observing Network: From People to Technology to Data Synthesis and Information Exchange

A successful integrated ocean acidification (OA) observing network must include (1) scientists and technicians from a range of disciplines from physics to chemistry to biology to technology development; (2) government, private, and intergovernmental support; (3) regional cohorts working together on regionally specific issues; (4) publicly accessible data from the open ocean to coastal to estuarine systems; (5) close integration with other networks focusing on related measurements or issues including the social and economic consequences of OA; and (6) observation-based informational products useful for decision making such as management of fisheries and aquaculture. The Global Ocean Acidification Observing Network (GOA-ON), a key player in this vision, seeks to expand and enhance geographic extent and availability of coastal and open ocean observing data to ultimately inform adaptive measures and policy action, especially in support of the United Nations 2030 Agenda for Sustainable Development. GOA-ON works to empower and support regional collaborative networks such as the Latin American Ocean Acidification Network, supports new scientists entering the field with training, mentorship, and equipment, refines approaches for tracking biological impacts, and stimulates development of lower-cost methodology and technologies allowing for wider participation of scientists. GOA-ON seeks to collaborate with and complement work done by other observing networks such as those focused on carbon flux into the ocean, tracking of carbon and oxygen in the ocean, observing biological diversity, and determining short- and long-term variability in these and other ocean parameters through space and time.

Tilbrook Bronte, Jewett Elizabeth B., DeGrandpre Michael D., Hernandez-Ayon Jose Martin, Feely Richard A., Gledhill Dwight K., Hansson Lina, Isensee Kirsten, Kurz Meredith L., Newton Janet A., Siedlecki Samantha A., Chai Fei, Dupont Sam, Graco Michelle, Calvo Eva, Greeley Dana, Kapsenberg Lydia, Lebrec Marine, Pelejero Carles, Schoo Katherina L., Telszewski Maciej - An Enhanced Ocean Acidification Observing Network: From People to Technology to Data Synthesis and Information Exchange - Frontiers in Marine Science, Vol. 6. , 2019 p.337 -

Download Paper (PDF)

Comparing Air-Sea Flux Measurements From a New Unmanned Surface Vehicle and Proven Platforms During the SPURS-2 Field Campaign

Abstract Two saildrones participated in the Salinity Processes in the Upper-ocean Regional Study 2 (SPURS-2) field campaign at 10°N, 125°W, as part of their more than six-month Tropical Pacific Observing System (TPOS)-2020 pilot study in the eastern tropical Pacific. The two saildrones were launched from San Francisco, California, on September 1, 2017, and arrived at the SPURS-2 region on October 15, one week before R/V Revelle. Upon arrival at the SPURS-2 site, they each began a two-week repeat pattern, sailing around the program’s central moored surface buoy. The heavily instrumented Woods Hole Oceanographic Institution (WHOI) SPURS-2 buoy serves as a benchmark for validating the saildrone measurements for air-sea fluxes. The data collected by the WHOI buoy and the saildrones were found to be in reasonably good agreement. Although of short duration, these ship-saildrone-buoy comparisons are encouraging as they provide enhanced understanding of measurements by various platforms in a rapidly changing subsynoptic weather system. The saildrones were generally able to navigate the challenging Intertropical Convergence Zone, where winds are low and currents can be strong, demonstrating that the saildrone is an effective platform for observing a wide range of oceanographic variables important to airsea interaction studies.

Dongxiao Zhang, Meghan F. Cronin, Christian Meinig, J. Thomas Farrar, Richard Jenkins, David Peacock, Jennifer Keene, Adrienne Sutton and Qiong Yang; Oceanography, Vol. 32, No. 2, SPECIAL ISSUE ON SPURS-2: Salinity Processes in the Upper-ocean Regional Study 2 (JUNE 2019), pp. 122-133

Download Paper (PDF)

Abrupt Fronts Embedded in Tropical Instability Waves Observed by Saildrones

As part of the Tropical Pacific Observing System (TPOS)-2020 project, two Saildrone Inc. "Saildrones" were deployed in the tropics to assess the capability of these innovative unmanned surface vehicles as potential platforms within the TPOS. Saildrone measurements include wind speed and direction, air- and sea-surface temperature, humidity, barometric pressure, downwelling solar and longwave radiation, surface salinity, upper ocean currents from a RDI-300 KHz workhorse acoustic Doppler current profiler, and a full suite of biogeochemistry measurements. Comparisons between the drone data and surface flux buoys show good agreement, confirming that this platform can make climate-quality meteorological and oceanographic observations. During the 6-month mission, La Niña conditions prevailed, and large-amplitude tropical instability waves propagated along the strong cold-tongue front. Saildrone measurements resolve not only the strong cold-tongue but also abrupt submesoscale fronts. The two Saildrones each traversed the northern edge of the equatorial cold tongue twice. Saildrones observed multiple abrupt fronts equatorward of the cold-tongue front with temperature and salinity changes as large as 1ºC and 0.3 psu, respectively, in less than 1 km. These sharp temperature fronts have the potential to result in large air-sea fluxes because air blowing across these fronts cannot equilibrate with the sea surface on such short length scales. Saildrone, with its high-resolution and adaptive sampling, offers the opportunity to document intense air-sea interaction associated with these abrupt fronts.

Cronin, M. F.; Donohue, K. A.; Zhang, D.; Jenkins, R.; Keene, J.; Abrupt Fronts Embedded in Tropical Instability Waves Observed by Saildrones; American Geophysical Union, Fall Meeting 2018, abstract #OS23F-1695; AGU, 12/2018

Download Paper (PDF)

Advances in Ecosystem Research: Saildrone Surveys of Oceanography, Fish, and Marine Mammals in the Bering Sea

Abstract: Saildrones are unmanned surface vehicles engineered for oceanographic research and powered by wind and solar energy. In the summer of 2016, two Saildrones surveyed the southeastern Bering Sea using passive acoustics to listen for vocalizations of marine mammals and active acoustics to quantify the spatial distribution of small and large fishes. Fish distributions were examined during foraging trips of northern fur seals (Callorhinus ursinus), and initial results suggest these prey distributions may influence the diving behavior of fur seals. The Saildrone is faster, has greater instrument capacity, and requires less support services than its counterparts. This innovative platform performed well in stormy conditions, and it demonstrated the potential to augment fishery surveys and advance ecosystem research.

Mordy, C.W., E.D. Cokelet, A. De Robertis, R. Jenkins, C.E. Kuhn, N. LawrenceSlavas, C.L. Berchok, J.L. Crance, J.T. Sterling, J.N. Cross, P.J. Stabeno, C. Meinig, H.M. Tabisola, W. Burgess, and I. Wangen. 2017. Advances in ecosystem research: Saildrone surveys of oceanography, fish, and marine mammals in the Bering Sea. Oceanography 30(2):113–115,

Download Paper (PDF)

Environmental Assessments of Offshore Carbon Capture and Storage (CCS) Sites Using Unmanned Surface Vehicles (USV)

Understanding the environmental context of potential subsea CO2 storage projects is a challenging task that requires the development of risk-based environmental monitoring to address public assurance, as well as regulatory requirements. A core need is an understanding and quantification of background environmental variability in relation to the likelihood of detection from putative release. Unmanned surface vehicle (USV) technology is rapidly evolving, with a number of USV platforms available that can meet a variety of needs in ocean observing. Advanced sensor technologies integrated on USVs promise coverage and flexibility for sustained observations at space and time scales not previously achievable. This paper describes CSIRO research with USVs in support of CCS environmental monitoring studies in Australia. CSIRO utilises a range of autonomous systems, including autonomous underwater vehicles, remotely operated vehicles and robotic profiling floats as part of its observing capabilities. For CCS studies, CSIRO is partnering with Saildrone Inc. to provide a flexible platform that houses a suite of sensors for environmental assessments at offshore CCS sites. The Saildrone platforms have been designed to accommodate sensors for detection of three important monitoring types: seawater carbon dioxide, bubble acoustics and water quality. The Saildrones can be used for long-range reconnaissance in a broad range of sea conditions and with up to 6-month deployment durations. Each Saildrone platform and its science systems can be operated remotely, with data transmitted back to shore via satellite to allow real-time monitoring of changes in the marine environment. The rapid deployment and response of the platform allows for more detailed investigation of features identified during surveys and of anomalies that exceed the known variability in measured variables. The combination of the platform with fixed measurements, such as those collected using more traditional oceanographic moorings, provides new capability to assess variability at CCS sites over a larger survey area than has been possible before. The sensor systems fitted to the Saildrone and the land based calibration and maintenance support facilities are state of the art. The carbon sensor suite delivers pH, pCO2 and dissolved oxygen. It is based on a robust system proven to work in the field over long periods and includes reference gas and transmission of multiple diagnostic parameters to ensure sensor performance and calibrations are maintained. The acoustic sensors use a two-frequency split beam system operating at 38 kHz and 2002 kHz that can detect low concentrations of bubbles in the water column. It will be possible to detect and monitor potential or reported bubble plumes over time to determine the cause. In this way reducing false alarms where under certain circumstances aggregations of fish or zooplankton can be mistakenly interpreted as a bubble plume. Sensors for sub-surface bio-optics to assess water column plankton (chlorophyll and particle backscatter), oceanographic (temperature and salinity) and meteorological data are also incorporated into the real-time data streams delivered from the Saildrone. This paper will provide an overview of the sensor configuration and performance capabilities of the USVs for use in environmental assessments to support CCS. Sea trial and other data including CCS monitoring strategies will be presented. Finally, the paper will discuss potential future uses of the platform for ongoing monitoring of CCS sites.

Marouchos, Andreas and Tilbrook, Bronte and Kloser, Rudy and Ryan, Tim and Passmore, Abe and Van Ooijen, Erik, Environmental Assessments of Offshore Carbon Capture and Storage (CCS) Sites Using Unmanned Surface Vehicles (USV). 14th Greenhouse Gas Control Technologies Conference Melbourne 21-26 October 2018 (GHGT-14) . Available at SSRN:

Download Paper (PDF)

Distribution, biomass, and demography of coastal pelagic fishes in the California Current Ecosystem during summer 2018 based on acoustic-trawl sampling

This report provides: 1) a detailed description of the acoustic-trawl method (ATM) used by NOAA’s Southwest Fisheries Science Center (SWFSC) for direct assessments of the dominant species of coastal pelagic species (CPS; i.e., Pacifc Sardine Sardinops sagax, Northern Anchovy Engraulis mordax, Pacifc Mackerel Scomber japonicus, Jack Mackerel Trachurus symmetricus, and Pacifc Herring Clupea pallasii) in the California Current Ecosystem (CCE) o ̇ the west coast of North America; and 2) estimates of the biomasses, distributions, and demographies of those CPS in the survey area between 26 June and 23 September 2018. The survey area spanned most of the continental shelf between the northern tip of Vancouver Island, British Columbia (BC) and San Diego, CA. Throughout the survey area, NOAA Ship Reuben Lasker (hereafter, Lasker) sampled along transects oriented approximately perpendicular to the coast, from the shallowest navigable depth (~30 m depth) to either a distance of 35 nmi or to the 1,000 fathom (~1830 m) isobath, whichever is farthest. Between approximately San Francisco and Pt. Conception, additional acoustic sampling was conducted along 4 nmi-long transects spaced 5-nmi apart using a wind- and solar-powered unmanned surface vehicle (USV; Saildrone, Inc.) in the nearshore where Lasker could not safely navigate.

Kevin L. Stierhoff, Juan P. Zwolinski, and David A. Demer. 2019. Distribution,biomass, and demography of coastal pelagic fishes in the California Current Ecosystem during summer 2018 based on acoustic-trawl sampling. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-613

Download Paper (PDF)

The Use of Saildrones to Examine Spring Conditions in the Bering Sea: Instrument Comparisons, Sea Ice Meltwater and Yukon River Plume Studies

Abstract: New technologies can help scientists measure and understand Arctic warming, sea ice loss and ecosystem change. NOAA has worked with Saildrone, Inc., to develop an unmanned surface vehicle (USV)—Saildrone—to make ocean surface measurements autonomously, even in challenging high-latitude conditions. USVs augment traditional research ship cruises, mitigate ship risk in high seas and shallow water, and make lower cost measurements. Under remote control, USV sampling strategy can be adapted to meet changing needs. Two Saildrones conducted 97-day missions in the Bering Sea in spring-summer 2015, reliably measuring atmospheric and oceanic parameters. Measurements were validated against shipboard values. Following that, the Saildrone sampling strategies were modified, first to measure the effects of sea-ice melt on surface cooling and freshening, and then to study the Yukon River plume.

D Cokelet, Edward & Meinig, Christian & Lawrence-Slavas, Noah & J Stabeno, Phyllis & W Mordy, Calvin & Tabisola, Heather & Jenkins, Richard & Cross, Jessica. (2015). The Use of Saildrones to Examine Spring Conditions in the Bering Sea: Instrument Comparisons, Sea Ice Meltwater and Yukon River Plume Studies.

Download Paper (PDF)

The use of Saildrones to examine spring conditions in the Bering Sea: Vehicle specification and mission performance

Abstract: During recent decades the US Arctic is experiencing a rapid loss of sea ice and subsequently increasingly warmer water temperatures. To better study this economically and culturally important marine ecosystem and the changes that are occurring, the use of new technologies is being explored to supplement traditional ship, satellite and mooring based data collection techniques. Unmanned surface vehicles (USV) are a rapidly advancing technology that has the potential to meet the requirement for long duration and economical scientific data collection with the ability for real-time data and adaptive sampling. In 2015, the National Oceanic and Atmospheric Administration's Pacific Marine Environmental Laboratory (NOAA-PMEL), the University of Washington (UW) and Saildrone Inc. (Alameda, California) explored the use of a novel USV technology in the Bering Sea and Norton Sound. Two Saildrones, wind and solar powered unmanned surface vehicles that can be used for extended research missions in challenging environments, were equipped with a suite of meteorological and oceanographic sensors. During the >3 month mission, the vehicles each traveled over 4100 nm, successfully completing several scientific survey assignments. This mission demonstrated the capability of the Saildrone vehicle to be launched from a dock to conduct autonomous and adaptive oceanographic research in a harsh, high-latitude environment.

C. Meinig, N. Lawrence-Slavas, R. Jenkins and H. M. Tabisola, "The use of Saildrones to examine spring conditions in the Bering Sea: Vehicle specification and mission performance," OCEANS 2015 - MTS/IEEE Washington, Washington, DC, 2015, pp. 1-6.

Download Paper (PDF)

Hindcast modeling of oil slick persistence from natural seeps

Abstract: Persistence of oil floating in the ocean is an important factor for evaluating hydrocarbon fluxes from natural seeps and anthropogenic releases into the environment. The objective of this work is to estimate the surface residence-time of the oil slick and to determine the importance of wind and surface currents on the trajectory and fate of the released oil. Oil slicks released from natural hydrocarbon seeps located in Green Canyon 600 lease block and its surrounding region in the Gulf of Mexico were analyzed. A Texture Classifying Neural Network Algorithm was used to delineate georectified polygons for oil slicks from 41 synthetic aperture radar images. Trajectories of the oil slicks were investigated by employing a Lagrangian particle-tracking surface oil drift model. A set of numerical simulations was performed by increasing hindcast interval in reverse time order from the image collection time in order to obtain the closest resemblance between the simulated oil pathways and the length and shape of the oil slicks observed in SAR images. The average surface residence-time predicted from the hindcast modeling was 6.4 h (± 5.7 h). Analysis of a linear regression model, including observed oil slick lengths and variables of wind, surface current, and their relative direction, indicated a statistically significant negative effect of wind speed on the surface oil drift. Higher wind speed (> 7 m s-1) reduced length of the oil slicks. When wind and surface currents were driving forces of the surface oil drift model, a good agreement between simulated trajectories and subsequent satellite observations (R2 = 0.9) suggested that a wind scaling coefficient of 0.035 and a wind deflection angle of 20º to the right of the wind direction were acceptable approximations for modeling wind effects in this study. Results from the numerical experimentation were supported by in situ observations conducted by a wind-powered autonomous surface vehicle (Saildrone). Results indicated that the surface currents are, indeed, responsible for stretching oil slicks and that surface winds are largely responsible for the disappearance of the oil slicks from the sea surface. Under conditions of low wind and strong current, natural seeps can produce oil slicks that are longer than 20 km and persist for up to 48 h.

Daneshgar, Samira & Dukhovskoy, Dmitry & Bourassa, Mark & Macdonald, Ian. (2016). Hindcast modeling of oil slick persistence from natural seeps. Remote Sensing of Environment. 189.

Download Paper (PDF)

Shelf-Slope Interactions and Carbon Transformation and Transport in the Northern Gulf of Mexico: Platform Proof of Concept for the Ocean Observing System in the Northern Gulf of Mexico

Abstract: Demonstrating the feasibility of operating the Saildrone in the northern Gulf of Mexico within a high amount of maritime activity, including commercial and recreational fishing, shipping, and oil and gas platforms and associated servicing vessels. Demonstrate the utility of “high-speed” (up to 9 knots) wind-propelled surface vehicles as fast adaptive sampling response tools and to effectively fill in gaps between moorings at separations greater than the local correlation length scales; Collect a dataset that can be used for regional ecosystem model development and for designing the observational systems needed for process studies of shelf-ocean exchange phenomena of import to the carbon cycle in the Gulf.

Howden, Stephan Howden & Lohrenz, Steven & Book, Jeff & Jenkins, Richard & Leonardi, Alan, Meinig, Christian (2015). Shelf-Slope Interactions and Carbon Transformation and Transport in the Northern Gulf of Mexico: Platform Proof of Concept for the Ocean Observing System in the Northern Gulf of Mexico. Northern Gulf Institute Sept 2017 Progress Report. NGI File # 15-NGI2-127. pp 115-122

Download Paper (PDF)