Scientific Papers

The impact and quality of Saildrone’s data has been featured in numerous scientific papers. Saildrone has demonstrated the highest possible levels of data quality, which has established scientific confidence in our measurements and sampling protocols. You can review some of the science publications below.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Extratropical Storms Induce Carbon Outgassing Over the Southern Ocean

The strength and variability of the Southern Ocean carbon sink is a significant source of uncertainty in the global carbon budget. One barrier to reconciling observations and models is understanding how synoptic weather patterns modulate air-sea carbon exchange. Here, we identify and track storms using atmospheric sea level pressure fields from reanalysis data to assess the role that storms play in driving air-sea CO2 exchange. We examine the main drivers of CO2 fluxes under storm forcing and quantify their contribution to Southern Ocean annual air-sea CO2 fluxes. Our analysis relies on a forced ocean-ice simulation from the Community Earth System Model, as well as CO2 fluxes estimated from Biogeochemical Argo floats. We find that extratropical storms in the Southern Hemisphere induce CO2 outgassing, driven by CO2 disequilibrium. However, this effect is an order of magnitude larger in observations compared to the model and caused by different reasons. Despite large uncertainties in CO2 fluxes and storm statistics, observations suggest a pivotal role of storms in driving Southern Ocean air-sea CO2 outgassing that remains to be well represented in climate models, and needs to be further investigated in observations.

Carranza, M.M., Long, M.C., Di Luca, A. et al. Extratropical storms induce carbon outgassing over the Southern Ocean. npj Clim Atmos Sci 7, 106 (2024).

Characterizing the California Current System through Sea Surface Temperature and Salinity

Characterizing temperature and salinity (T-S) conditions is a standard framework in oceanography to identify and describe deep water masses and their dynamics. At the surface, this practice is hindered by multiple air–sea–land processes impacting T-S properties at shorter time scales than can easily be monitored. Now, however, the unsurpassed spatial and temporal coverage and resolution achieved with satellite sea surface temperature (SST) and salinity (SSS) allow us to use these variables to investigate the variability of surface processes at climate-relevant scales. In this work, we use SSS and SST data, aggregated into domains using a cluster algorithm over a T-S diagram, to describe the surface characteristics of the California Current System (CCS), validating them with in situ data from uncrewed Saildrone vessels. Despite biases and uncertainties in SSS and SST values in highly dynamic coastal areas, this T-S framework has proven useful in describing CCS regional surface properties and their variability in the past and in real time, at novel scales. This analysis also shows the capacity of remote sensing data for investigating variability in land–air–sea interactions not previously possible due to limited in situ data.

García-Reyes, Marisol, Gammon Koval, and Jorge Vazquez-Cuervo. 2024. "Characterizing the California Current System through Sea Surface Temperature and Salinity" Remote Sensing 16, no. 8: 1311.


Diurnal warming rectification in the tropical Pacific linked to sea surface temperature front

Sharp and rapid changes in the sea surface temperature (SST) associated with fronts and the diurnal cycle can drive changes in the atmospheric boundary-layer stability and circulation. Here we show how a one-dimensional surface ocean model forced with either high-resolution or daily averaged surface fluxes can be used to distinguish diurnal versus frontal SST anomalies observed from an uncrewed surface vehicle. The model, forced with daily satellite fluxes, shows that the diurnal warming is largest within the equatorial Pacific cold tongue of SST. The strong persistent SST front north of the cold tongue is evident in both the oceanic and atmospheric boundary-layer stability scales and, as a consequence, in the magnitude of the diurnal ocean warming. Using SST, barometric pressure and surface wind measurements from moorings at 0°, 95° W and 2° N, 95° W, we show that the front in the SST diurnal warming results in a weakened SST front in the afternoon and a corresponding reduced meridional gradient in the barometric pressure that appears to contribute to a diurnal pulsing of the surface meridional winds. To the extent that these modulate the surface branch of the Hadley cell, these diurnal variations may have remote impacts.

Cronin, M.F., Zhang, D., Wills, S.M. et al. Diurnal warming rectification in the tropical Pacific linked to sea surface temperature front. Nat. Geosci. (2024).

Validation of NASA Sea Surface Temperature Satellite Products Using Saildrone Data

Sea Surface Temperature (SST) is at the core of many processes in the oceans. Various remote sensing platforms have been used to obtain SST products of different scales, but their validation remains a topic of ongoing research. One promising platform is an uncrewed surface vehicle called Saildrone. We use the data from eight Saildrone deployments of the USA West Coast 2019 campaign to validate MODIS level-2 and Multi-scale Ultra-high Resolution (MUR) level-4 satellite SST products at 1km spatial resolution and to assess the robustness of the quality levels of MODIS level-2 products over the California Coast. Pixel-based SST comparisons between Saildrone and the satellite products were performed, as well as thermal gradient comparisons computed both at the pixel-base level and using kriging interpolation. The results generally showed better accuracies for the MUR products. The characterization of the MODIS quality level proved to be valid in areas covered by bad-quality MODIS pixels but less valid in areas covered by lower-quality pixels. The latter implies possible errors in the MODIS quality level characterization and MUR interpolation processes. We have demonstrated the ability of the Saildrones to accurately validate near-shore satellite SST products and provide important information for the quality assessment of satellite products.

Koutantou, Kalliopi, Philip Brunner, and Jorge Vazquez-Cuervo, "Validation of NASA Sea Surface Temperature Satellite Products Using Saildrone Data," in Remote Sensing, vol 15, 2023, no. 9: 2277.


Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast

Abstract: Traditional ways of validating satellite-derived sea surface temperature (SST) and sea surface salinity (SSS) products by comparing with buoy measurements, do not allow for evaluating the impact of mesoscale-to-submesoscale variability. We present the validation of remotely sensed SST and SSS data against the unmanned surface vehicle (USV)—called Saildrone—measurements from the 60 day 2018 Baja California campaign. More specifically, biases and root mean square differences (RMSDs) were calculated between USV-derived SST and SSS values, and six satellite-derived SST (MUR, OSTIA, CMC, K10, REMSS, and DMI) and three SSS (JPLSMAP, RSS40, RSS70) products. Biases between the USV SST and OSTIA/CMC/DMI were approximately zero, while MUR showed a bias of 0.3 ◦C. The OSTIA showed the smallest RMSD of 0.39 ◦C, while DMI had the largest RMSD of 0.5 ◦C. An RMSD of 0.4 ◦C between Saildrone SST and the satellite-derived products could be explained by the diurnal and sub-daily variability in USV SST, which currently cannot be resolved by remote sensing measurements. SSS showed fresh biases of 0.1 PSU for JPLSMAP and 0.2 PSU and 0.3 PSU for RMSS40 and RSS70 respectively. SST and SSS showed peaks in coherence at 100 km, most likely associated with the variability of the California Current System.

Vazquez-Cuervo, J.; Gomez-Valdes, J.; Bouali, M.; Miranda, L.E.; Van der Stocken, T.; Tang, W.; Gentemann, C. "Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast." Remote Sens. 2019, 11, 1964.


Validating Salinity from SMAP and HYCOM Data with Saildrone Data during EUREC4A-OA/ATOMIC

The 2020 ‘Elucidating the role of clouds-circulation coupling in climate-Ocean-Atmosphere’ (EUREC4A-OA) and the ‘Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign’ (ATOMIC) campaigns focused on improving our understanding of the interaction between clouds, convection and circulation and their function in our changing climate. The campaign utilized many data collection technologies, some of which are relatively new. In this study, we used saildrone uncrewed surface vehicles, one of the newer cutting edge technologies available for marine data collection, to validate Level 2 and Level 3 Soil Moisture Active Passive (SMAP) satellite and Hybrid Coordinate Ocean Model (HYCOM) sea surface salinity (SSS) products in the Western Tropical Atlantic. The saildrones observed fine-scale salinity variability not present in the lower-spatial resolution satellite and model products. In regions that lacked significant small-scale salinity variability, the satellite and model salinities performed well. However, SMAP Remote Sensing Systems (RSS) 70 km generally outperformed its counterparts outside of areas with submesoscale SSS variation, whereas RSS 40 km performed better within freshening events such as a fresh tongue. HYCOM failed to detect the fresh tongue. These results will allow researchers to make informed decisions regarding the most ideal product and its drawbacks for their applications in this region and aid in the improvement of mesoscale and submesoscale SSS products, which can lead to the refinement of numerical weather prediction (NWP) and climate models.

Hall, Kashawn, Alton Daley, Shanice Whitehall, Sanola Sandiford, and Chelle L. Gentemann. 2022. "Validating Salinity from SMAP and HYCOM Data with Saildrone Data during EUREC4A-OA/ATOMIC" Remote Sensing 14, no. 14: 3375.


Using Saildrones to Validate Arctic Sea-Surface Salinity from the SMAP Satellite and from Ocean Models

The Arctic Ocean is one of the most important and challenging regions to observe—it experiences the largest changes from climate warming, and at the same time is one of the most difficult to sample because of sea ice and extreme cold temperatures. Two NASA-sponsored deployments of the Saildrone vehicle provided a unique opportunity for validating sea-surface salinity (SSS) derived from three separate products that use data from the Soil Moisture Active Passive (SMAP) satellite. To examine possible issues in resolving mesoscale-to-submesoscale variability, comparisons were also made with two versions of the Estimating the Circulation and Climate of the Ocean (ECCO) model (Carroll, D; Menmenlis, D; Zhang, H.). The results indicate that the three SMAP products resolve the runoff signal associated with the Yukon River, with high correlation between SMAP products and Saildrone SSS. Spectral slopes, overall, replicate the -2.0 slopes associated with mesoscale-submesoscale variability. Statistically significant spatial coherences exist for all products, with peaks close to 100 km. Based on these encouraging results, future research should focus on improving derivations of satellite-derived SSS in the Arctic Ocean and integrating model results to complement remote sensing observations.

Vazquez-Cuervo, Jorge; Gentemann, Chelle; Tang, Wenqing; Carroll, Dustin; Zhang, Hong; Menemenlis, Dimitris; Gomez-Valdes, Jose; Bouali, Marouan; Steele, Michael. 2021. "Using Saildrones to Validate Arctic Sea-Surface Salinity from the SMAP Satellite and from Ocean Models" Remote Sens. 13, no. 5: 831.


Using Saildrones to Assess the SMAP Sea Surface Salinity Retrieval in the Coastal Regions

Remote sensing of sea surface salinity (SSS) near land is difficult due to land contamination. In this article, we assess SSS retrieved from the soil moisture active passive (SMAP) mission in coastal region. SMAP SSS products from the Jet Propulsion Laboratory (JPL), and from the remote sensing systems (RSS) are collocated with in situ data collected by saildrones during the North American West Coast Survey. Satellite and saildrone salinity measurements reveal consistent large-scale features: the fresh water (low SSS) assocciated with the Columbia River discharge, and the relatively salty water (high SSS) near Baja California associated with regional upwelling. The standard deviation of the difference for collocations with SMAP Level 3 (eight days average) between 40 and 100 km from land is 0.51 (0.56) psu for JPL V5 (RSS V4 70 km). This is encouraging for the potential application of SMAP SSS in monitoring coastal zone freshwater particularly where there exists large freshwater variance. We analyze the different land correction approaches independently developed at JPL and RSS using SMAP level 2 matchups. We found that JPL's land correction method is more promising in pushing SMAP SSS retrieval towards land. For future improvement, we suggest implementing dynamic land correction versus the current climatology-based static land correction to reduce uncertainty in estimating land contribution. In level 2 to level 3 processing, a more rigorous quality control may help to eliminate outliers and deliver reliable level 3 products without over-smoothing, which is important in resolving coastal processes such as fronts or upwelling.

W. Tang et al., "Using Saildrones to Assess the SMAP Sea Surface Salinity Retrieval in the Coastal Regions," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 7042-7051, 2022, doi: 10.1109/JSTARS.2022.3200305.


Fish Avoidance of Ships During Acoustic Surveys Tested with Quiet Uncrewed Surface Vessels

Acoustic surveys to estimate fish biomass and abundance are a major component of many fisheries monitoring programs. An important bias in acoustic surveys is that fish may avoid the survey vessel. Here, we utilized quiet uncrewed surface vessels (USVs) equipped with 120 kHz split beam echosounders to evaluate fish responses to motorized survey vessels. Two of these USVs were deployed in Lakes Michigan and Huron in summer 2021 and compared against three motorized vessels used in conventional fisheries acoustic surveys. Paired comparisons employed vessel-drone passes that provided the opportunity to observe fish response as vessels approached and then overtook their quiet USV counterparts. Sound originating from the vessels was primarily in the 10–1000 Hz range. Overall received sound pressure levels for ships at the closest pass were 100 dB (re 1 µPa @ 1 m) for one and 133–134 dB for the other two vessels. In contrast, sound originating from the USV was not detectable over ambient noise. We examined acoustic data from the USVs for potential changes in total acoustic backscatter, average target depth, and average in situ target strength as vessels approached. We observed weak evidence of an avoidance response by fish to the vessel with the loudest noise profile and highest survey speed but not for the other two vessels. We also compared acoustic data from 33 2-km transects surveyed by both vessels and the USVs, finding few differences between vessel and USV data for water depths between 5 and 80 m. Results from this work suggest that acoustics estimates of fishes in Lakes Michigan and Huron (primarily alewife, rainbow smelt, and bloater) are largely consistent among the vessels used in these two lakes for standard acoustic surveys and that fish avoidance is minimal in water depths > 5 meters.

Thomas M. Evans, Lars G. Rudstam, Suresh A. Sethi, David M. Warner, S. Dale Hanson, Benjamin Turschak, Steven A. Farha, Andrew R. Barnard, Daniel L. Yule, Mark R. DuFour, Timothy P. O’Brien, Kevin N. McDonnell, James M. Watkins, Scott R. Koproski, Susan E. Wells, Patricia M. Dieter, Erik Kocher, James J. Roberts, Steven A. Senczyszyn, Peter C. Esselman, Fish avoidance of ships during acoustic surveys tested with quiet uncrewed surface vessels, Fisheries Research, Volume 267, 2023, 106817, ISSN 0165-7836,


High Latitude Sea Surface Skin Temperatures Derived From Saildrone Infrared Measurements

From May 15 to October 11, 2019, six Saildrone uncrewed surface vehicles (USVs) were deployed for 150-day cruises collecting a suite of atmospheric and oceanographic measurements from Dutch Harbor, Alaska, transiting the Bering Strait into the Chukchi Sea and the Arctic Ocean. Two Saildrones funded by the National Aeronautics and Space Administration (NASA), SD-1036 and SD-1037, were equipped with infrared (IR) radiation pyrometers in a “unicorn” structure on the deck for the determination of the ocean sea surface skin temperature (SST skin ). We present an algorithm to derive SSTskin from the downward- and upward-looking radiometers and estimate the main contributions to the inaccuracy of SSTskin. After stringent quality control of data and eliminating measurements influenced by sea ice and precipitation, and restricting the acceptable tilt angles of the USV based on radiative transfer simulations, SSTskin can be derived to an accuracy of approximately 0.12 K. The error budget of the derived SSTskin is developed, and the largest component comes from the instrumental uncertainties, assuming that the viewing geometry is adequately determined. Thus, Saildrones equipped with these sensors could provide sufficiently accurate SSTskin retrievals for studying the physics of the thermal skin effect, in conjunction with accurate subsurface thermometer measurements, and for validating satellite-derived SSTskin fields at high latitudes.

C. Jia, P. J. Minnett, M. Szczodrak and M. Izaguirre, "High Latitude Sea Surface Skin Temperatures Derived From Saildrone Infrared Measurements," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-14, 2023, Art no. 4200214, doi: 10.1109/TGRS.2022.3231519.


Never Miss an Update

Stay informed with the latest research findings and updates.

By clicking Sign Up you're confirming that you agree with our Privacy Policy

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.