Science Publications

The impact and quality of Saildrone’s data has been featured in numerous scientific papers. Saildrone has demonstrated the highest possible levels of data quality, which has established scientific confidence in our measurements and sampling protocols. You can review some of the science publications below.

Validating Salinity from SMAP and HYCOM Data with Saildrone Data during EUREC4A-OA/ATOMIC

The 2020 ‘Elucidating the role of clouds-circulation coupling in climate-Ocean-Atmosphere’ (EUREC4A-OA) and the ‘Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign’ (ATOMIC) campaigns focused on improving our understanding of the interaction between clouds, convection and circulation and their function in our changing climate. The campaign utilized many data collection technologies, some of which are relatively new. In this study, we used saildrone uncrewed surface vehicles, one of the newer cutting edge technologies available for marine data collection, to validate Level 2 and Level 3 Soil Moisture Active Passive (SMAP) satellite and Hybrid Coordinate Ocean Model (HYCOM) sea surface salinity (SSS) products in the Western Tropical Atlantic. The saildrones observed fine-scale salinity variability not present in the lower-spatial resolution satellite and model products. In regions that lacked significant small-scale salinity variability, the satellite and model salinities performed well. However, SMAP Remote Sensing Systems (RSS) 70 km generally outperformed its counterparts outside of areas with submesoscale SSS variation, whereas RSS 40 km performed better within freshening events such as a fresh tongue. HYCOM failed to detect the fresh tongue. These results will allow researchers to make informed decisions regarding the most ideal product and its drawbacks for their applications in this region and aid in the improvement of mesoscale and submesoscale SSS products, which can lead to the refinement of numerical weather prediction (NWP) and climate models.

Hall, Kashawn, Alton Daley, Shanice Whitehall, Sanola Sandiford, and Chelle L. Gentemann. 2022. "Validating Salinity from SMAP and HYCOM Data with Saildrone Data during EUREC4A-OA/ATOMIC" Remote Sensing 14, no. 14: 3375. https://doi.org/10.3390/rs14143375

Download Paper (PDF)

Assessment of Saildrone Extreme Wind Measurements in Hurricane Sam Using MW Satellite Sensors

In 2021, a novel NOAA-Saildrone project deployed five uncrewed surface vehicle Saildrones (SDs) to monitor regions of the Atlantic Ocean and Caribbean Sea frequented by tropical cyclones. One of the SDs, SD-1045, crossed Hurricane Sam (Category 4) on September 30, providing the first-ever surface-ocean videos of conditions in the core of a major hurricane and reporting near-surface winds as high as 40 m/s. Here, we present a comprehensive analysis and interpretation of the Saildrone ocean surface wind measurements in Hurricane Sam, using the following datasets for direct and indirect comparisons: an NDBC buoy in the path of the storm, radiometer tropical cyclone (TC) winds from SMAP and AMSR2, wind retrievals from the ASCAT scatterometers and SAR (RadarSat2), and HWRF model winds. The SD winds show excellent consistency with the satellite observations and a remarkable ability to detect the strength of the winds at the SD location. We use the HWRF model and satellite data to perform cross-comparisons of the SD with the buoy, which sampled different relative locations within the storm. Finally, we review the collective consistency among these measurements by describing the uncertainty of each wind dataset and discussing potential sources of systematic errors, such as the impact of extreme conditions on the SD measurements and uncertainties in the methodology.

Ricciardulli, Lucrezia, Gregory R. Foltz, Andrew Manaster, and Thomas Meissner. 2022. "Assessment of Saildrone Extreme Wind Measurements in Hurricane Sam Using MW Satellite Sensors" Remote Sensing 14, no. 12: 2726. https://doi.org/10.3390/rs14122726

Download Paper (PDF)

Autonomous Wintertime Observations of Air-Sea Exchange in the Gulf Stream Reveal a Perfect Storm for Ocean CO2 Uptake

A scarcity of wintertime observations of surface ocean carbon dioxide partial pressure (pCO2) in and near the Gulf Stream creates uncertainty in the magnitude of the regional carbon sink and its controlling mechanisms. Recent observations from an Uncrewed Surface Vehicle (USV), outfitted with a payload to measure surface ocean and lower atmosphere pCO2, revealed sharp gradients in ocean pCO2 across the Gulf Stream. Surface ocean pCO2 was lower by ∼50 μatm relative to the atmosphere in the subtropical mode water (STMW) formation region. This undersaturation combined with strong wintertime winds allowed for rapid ocean uptake of CO2, averaging −11.5 mmol m−2 day−1 during the February 2019 USV mission. The unique timing of this mission revealed active STMW formation. The USV proved to be a useful tool for CO2 flux quantification in the poorly observed, dynamic western boundary current environment.

Nickford, S., Palter, J. B., Donohue, K., Fassbender, A. J., Gray, A. R., Long, J., et al. (2022). Autonomous wintertime observations of air-sea exchange in the Gulf Stream reveal a perfect storm for ocean CO2 uptake. Geophysical Research Letters, 49, e2021GL096805. https://doi.org/10.1029/2021GL096805

Download Paper (PDF)

Comparison of GHRSST SST Analysis in the Arctic Ocean and Alaskan Coastal Waters Using Saildrones

There is high demand for complete satellite SST maps (or L4 SST analyses) of the Arctic regions to monitor the rapid environmental changes occurring at high latitudes. Although there are a plethora of L4 SST products to choose from, satellite-based products evolve constantly with the advent of new satellites and frequent changes in SST algorithms, with the intent of improving absolute accuracies. The constant change of these products, as reflected by the version product, make it necessary to do periodic validations against in situ data. Eight of these L4 products are compared here against saildrone data from two 2019 campaigns in the western Arctic, as part of the MISST project. The accuracy of the different products is estimated using different statistical methods, from standard and robust statistics to Taylor diagrams. Results are also examined in terms of spatial scales of variability using auto- and cross-spectral analysis. The three products with the best performance, at this point and time, are used in a case study of the thermal features of the Yukon–Kuskokwim delta. The statistical analyses show that two L4 SST products had consistently better relative accuracy when compared to the saildrone subsurface temperatures. Those are the NOAA/NCEI DOISST and the RSS MWOI SSTs. In terms of the spectral variance and feature resolution, the UK Met Office OSTIA product appears to outperform all others at reproducing the fine scale features, especially in areas of high spatial variability, such as the Alaska coast. It is known that L4 analyses generate small-scale features that get smoothed out as the SSTs are interpolated onto spatially complete grids. However, when the high-resolution satellite coverage is sparse, which is the case in the Arctic regions, the analyses tend to produce more spurious small-scale features. The analyses here indicate that the high-resolution coverage, attainable with current satellite infrared technology, is too sparse, due to cloud cover to support very high resolution L4 SST products in high latitudinal regions. Only for grid resolutions of ~9–10 km or greater does the smoothing of the gridding process balance out the small-scale noise resulting from the lack of high-resolution infrared data. This scale, incidentally, agrees with the Rossby deformation radius in the Arctic Ocean (~10 km).

Vazquez-Cuervo, Jorge, Sandra L. Castro, Michael Steele, Chelle Gentemann, Jose Gomez-Valdes, and Wenqing Tang. 2022. "Comparison of GHRSST SST Analysis in the Arctic Ocean and Alaskan Coastal Waters Using Saildrones" Remote Sensing 14, no. 3: 692. https://doi.org/10.3390/rs14030692

Download Paper (PDF)

Polar Region Bathymetry: Critical Knowledge for the Prediction of Global Sea Level Rise

The ocean and the marine parts of the cryosphere interact directly with, and are affected by, the seafloor and its primary properties of depth (bathymetry) and shape (morphology) in many ways. Bottom currents are largely constrained by undersea terrain with consequences for both regional and global heat transport. Deep ocean mixing is controlled by seafloor roughness, and the bathymetry directly influences where marine outlet glaciers are susceptible to the inflow relatively warm subsurface waters - an issue of great importance for ice-sheet discharge, i.e., the loss of mass from calving and undersea melting. Mass loss from glaciers and the Greenland and Antarctic ice sheets, is among the primary drivers of global sea-level rise, together now contributing more to sea-level rise than the thermal expansion of the ocean. Recent research suggests that the upper bounds of predicted sea-level rise by the year 2100 under the scenarios presented in IPCC’s Special Report on the Ocean and Cryosphere in a Changing Climate (SROCCC) likely are conservative because of the many unknowns regarding ice dynamics. In this paper we highlight the poorly mapped seafloor in the Polar regions as a critical knowledge gap that needs to be filled to move marine cryosphere science forward and produce improved understanding of the factors impacting ice-discharge and, with that, improved predictions of, among other things, global sea-level. We analyze the bathymetric data coverage in the Arctic Ocean specifically and use the results to discuss challenges that must be overcome to map the most remotely located areas in the Polar regions in general.

Jakobsson M and Mayer LA (2022) Polar Region Bathymetry: Critical Knowledge for the Prediction of Global Sea Level Rise. Front. Mar. Sci. 8:788724. doi: 10.3389/fmars.2021.788724

Download Paper (PDF)